翻訳と辞書
Words near each other
・ Cooch Behar Panchanan Barma University
・ Cooch Behar railway station
・ Cooch Behar Rambhola High School
・ Cooch Behar Sadar subdivision
・ Cooch Behar Stadium
・ Cooch Behar State
・ Cooch Behar State Railway
・ Cooch Behar Uttar (Vidhan Sabha constituency)
・ Conway Twitty discography
・ Conway Whittle Sams
・ Conway Yard
・ Conway Zirkle
・ Conway's Bridge
・ Conway's Game of Life
・ Conway's law
Conway's LUX method for magic squares
・ Conway's Soldiers
・ Conway, Arkansas
・ Conway, Florida
・ Conway, Iowa
・ Conway, Kansas
・ Conway, Louisiana
・ Conway, Massachusetts
・ Conway, Missouri
・ Conway, New Hampshire
・ Conway, North Carolina
・ Conway, North Dakota
・ Conway, Nova Scotia
・ Conway, Pennsylvania
・ Conway, South Carolina


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Conway's LUX method for magic squares : ウィキペディア英語版
Conway's LUX method for magic squares
Conway's LUX method for magic squares is an algorithm by John Horton Conway for creating magic squares of order 4''n''+2, where ''n'' is a natural number.
==Method==
Start by creating a (2''n''+1)-by-(2''n''+1) square array consisting of
* ''n''+1 rows of Ls,
* 1 row of Us, and
* ''n''-1 rows of Xs,
and then exchange the U in the middle with the L above it.
Each letter represents a 2x2 block of numbers in the finished square.
Now replace each letter by four consecutive numbers, starting with 1, 2, 3, 4 in the centre square of the top row, and moving from block to block in the manner of the Siamese method: move up and right, wrapping around the edges, and move down whenever you are obstructed. Fill each 2x2 block according to the order prescribed by the letter:
:\mathrm: \quad \begin4&&1\\&\swarrow&\\2&\rightarrow&3\end \qquad \mathrm: \quad \begin1&&4\\\downarrow&&\uparrow\\2&\rightarrow&3\end \qquad \mathrm:\quad \begin1&&4\\&\searrow\!\!\!\!\!\!\nearrow&\\3&&2\end

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Conway's LUX method for magic squares」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.